Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; 12(9): e202300112, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37688328

RESUMO

Methane decomposition is a promising route to synthesize COx -free hydrogen and carbon nanomaterials (CNMs ). In this work, the impregnation method was employed for the preparation of the catalysts. Systematic investigations on the activity and stability of Fe-based catalysts were carried out in a packed-bed micro-activity reactor at 800 °C with a feed gas flow rate of 18 mL/min. The effect of doping Y2 O3 , MgO, SiO2 and TiO2 over ZrO2 on the catalytic performance was also studied. BET revealed that the specific surface areas and pore volumes are increased after SiO2 , TiO2 , and Y2 O3 are added to ZrO2 while MgO had a negative impact and hence a little decrease in specific surface area is observed. The catalytic activity results showed that the Fe-based catalyst supported over TiO2 -doped ZrO2 that is, Fe-TiZr, demonstrated the highest activity and stability, with a maximum methane conversion of 81.3 % during 180 min time-on-stream. At 800 °C, a maximum initial methane conversion of 73 %, 38 %, 64 %, and 69 % and a final carbon yield of 121 wt. %, 55 wt. %, 354 wt. %, and 174 wt. % was achieved using Fe-MgZr, Fe-SiZr, Fe-TiZr and Fe-YZr catalysts, respectively. Moreover, bulk deposition of uniform carbon nanotubes with a high degree of graphitization and different diameters was observed over the catalysts.

2.
Chem Rec ; 22(7): e202200030, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475530

RESUMO

The emerging concept of the hydrogen economy is facing challenges associated with hydrogen storage and transport. The utilization of ammonia as an energy (hydrogen) carrier for the on-site generation of hydrogen via ammonia decomposition has gained attraction among the scientific community. Ruthenium-based catalysts are highly active but their high cost and less abundance are limitations for scale-up application. Therefore, combining ruthenium with cheaper transition metals such as nickel, cobalt, iron, molybdenum, etc., to generate metal-metal (bimetallic) surfaces suitable for ammonia decomposition has been investigated in recent years. Herein, the recent trends in developing bimetallic catalyst systems, the role of metal type, support materials, promoter, synthesis techniques, and the investigations of the reaction kinetics and mechanism for ammonia decomposition have been reviewed.

3.
Molecules ; 25(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138289

RESUMO

Catalysts of 10% Ni, supported on promoted alumina, were used to accomplish the partial oxidation of methane. The alumina support was doped with oxides of Mo, Mg, Ti and Y. An incipient wetness impregnation technique was used to synthesize the catalysts. The physicochemical properties of the catalysts were described by XRD, H2-TPR (temperature programmed reduction), BET, TGA, CO2-TPD (temperature-programmed desorption) and Raman. The characterization results denoted that Ni has a strong interaction with the support. The TGA investigation of spent catalysts displayed the anticoking enhancement of the promoters. The impact of the support promoters on the catalyst stability, methane conversion and H2 yield was inspected. Stability tests were done for 460 min. The H2 yields were 76 and 60% and the CH4 conversions were 67 and 92%, respectively, over Ni/Al2O3+Mg, when the reaction temperatures were 550 and 650 °C, respectively. The performance of the present work was compared to relevant findings in the literature.


Assuntos
Compostos de Alumínio/química , Manganês/química , Metano/química , Molibdênio/química , Níquel/química , Titânio/química , Ítrio/química , Catálise , Oxirredução
4.
ACS Appl Mater Interfaces ; 6(20): 17730-9, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25233252

RESUMO

Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...